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Abstract. An effective Lagrangian for the conformally coupled Klein-Gordon field in an 
expanding 3-flat Robertson-Walker universe is deduced, and from this the number density 
of the particle pairs created is calculated exactly. An approximation formula for the 
imaginary part of the effective action density is given. It is applied to the already solved case 
and to an as yet not exactly solved one. 

1. Introduction 

The papers of Candelas and Raine (1975) and Dowker and Critchley (1976a, b) are the 
only ones which are known to the author where for a cosmological gravitational 
field-the de Sitter universe-the effective Lagrange formalism is applied to the pair 
creation phenomenon with rigorous results although they get no particle creation out of 
the vacuum. The reason is, that for the most physical cosmologies, the ‘big bang’ 
cosmologies, it is not possible to construct effective Lagrangians and Green’s functions 
which are unique and, in connection with this, enough modes which can be identified 
with ‘particles’. In stressing the modal character, we restrict ourselves in this paper to 
expansion laws in which these problems do not occur. Because we are interested only in 
the number of created particles and not in the effective energy-momentum tensor for 
the vacuum fluctuations, only the imaginary part of the effective action is important to 
us. The calculation of this part does not involve regularisation operations so we are not 
forced to insist on manifest covariance in the course of our calculations. 

The cosmological gravitational field we have chosen for our exact calculations is the 
one introduced by Audretsch and Schafer (1978). 

With an approximation formula for the imaginary part of the effective action density 
we will approximately solve the already solved problem and then an as yet not exactly 
solved one. 

The termini particles are used in the same sense as in Schafer (1978), i.e. as modes 
with the ‘strongest’ WKB-character appearing asymptotically. The notation used is as 
follows: metric signature is denoted by (+ - - -); qCLY denotes the Minkowski metric; a, 
equals a/ax”; V, is the covariant derivative; g = det(gCLy); R is the curvature scalar, 
Greek indices run from 0 to 3; Latin indices from 1 to 3 and h = c = 1. 
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2. Cosmological fields 

The cosmological fields we have chosen for our calculations are as follows (-a < x p  < 
+a): 

ds2 = C12v,,, dxp dx’, 

0’ = a’ + b 2 T 2 ,  

(1) 

( ’ a )  

a’ = a 2  + (b2v2)’, ( 1 6 )  

in which a 2  and b2  are constants and 77 = xo. In the case when a’ equals 0 or is negligible 
compared to b 2 v 2  or ( b  7 ) equations ( l a )  and ( l b )  describe contracting and 
expanding radiation and incoherent matter dominated 3-flat Robertson-Walker uni- 
verses respectively. 

2 2 2  

3. Quantum field 

The quantum field we discuss is the conformally coupled complex Klein-Gordon field 0 
with mass m and action S: 

S =  @*F@dd4x; F = -J<(gguO,V, + R / 6  + m 2 ) .  (2) J 
The equation of motion reads 

F a  = 0.  (3) 

To be able to perform exact calculations we make the same substitution as Raine and 
Winlove (1975): = (-g)-1’8c$ and F = (-g)’l8f(-g)’/’ .  We can then write for 
equations (2) and (3), using expression (1): 

S = c$*fc$ d4x, f = - q L I Y a ,  a,-m2f12 

fc$ =o .  

f(x)G(x, x’) = S4(x -x’). 

I 
Green’s function G for the equation (3a)  satisfies the relation 

(4) 

After introducing Schwinger’s fictitious Hilbert space it is possible to rewrite equation 
(4) as an operator equation: 

fG = 1; f = r?@”pgpy - m 2 n 2 .  (4a)  

G(x, x‘) = (x(G(x’),  

(xlllx‘) = (XIX’ )  = S4(x -x‘), 

Hence the following relations hold: 

f(X)S4(X -x‘) = (xlflx’), 

X,/X) = X@/X), 

[X@, x”I= [ p , ,  P Y I  = 0 ,  [ p y ,  xg] = is: 1. 
The formal solution of equation (4a)  with Feynman’s boundary condition reads 

loa exp(ifs) ds. 
1 G --=-i 

“ - f + l o  
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If we define (x, six’, 0) = (xlexp(-iHs)lx’) with H = -f, then the transition amplitude 
(x, SIX ’ ,  0) satisfies the Schrodinger equation: 

(6)  

and the boundary condition (x ,  OIx’, 0) = S4(x -x‘). The Heisenberg equations of 
motion corresponding to equation (6) are 

i(a/as)(x, six ’ ,  0) = ~ ( x ) ( x ,  S I X ’ ,  0) 

dx”/ds = i[H, xW], dp,lds = i[H, p,l. (7) 

With the help of the amplitude (x’, SIX, 0), Green’s function Gm(x’, x )  according to 
equation ( 5 )  can be written as 

m 

Gm(x, x’) = -i I (x, six’, 0) ds. 
0 

If we follow Schwinger (1951) and DeWitt (1975) the following representation for the 
one-loop action functional or the effective action W“’ (which is defined by 
(out vaclin vac) = eiW”’) is possible: 

W“’ = L(x)  d4x (8) I 
with 

L ( x )  = -i s-’(x, S I X ,  0) ds (9) r 
whereby L(x)  is known as the effective Lagrangian. For the cosmological situations 
( la )  and (16) /in vac) and lout vac) are the vacuum states in both time-asymptotic 
regions. The probability, that the vacuum has remained the vacuum, is simply given by 
e-21m W(1)  

4. Pair creation probability 

Before we are able to calculate 2 Im W“’ according to equations (8) and (9) we must 
solve equation (6). This we will do at present for the expansion law ( l a ) .  Because in 
this case the Hamiltonian operator H has the same form as an operator for the usual 
quantum mechanical free particle and the harmonic oscillator with imaginary 
frequency, the solution of equation (6) is easily obtained. We have (cf., for example, 
Feynman and Hibbs 1965) 

x exp{(-ibm/4)[coth(bms)(xo -xf0)’  + tanh(bms)(xO + x”)~]} (10) 

and 

-i 2bms ‘I2 
(” o ) = s ( s i n h ( 2 b m s )  ) C2 exp[-im2a2s -ibm tanh(bm~)(x’)~]. ( l o a )  

The expression ( loa )  is also obtainable with the help of the paper of Brown and Duff 
(1975). If we perform the limit of vanishing cosmic expansion (b += 0) we arrive at the 
flat space-time expression for the amplitude (x, SIX’,  0) (Schwinger 1951). This is not 
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the case for the situation which is discussed by Chitre and Hartle (1977) as Nariai and 
Azuma (1978) have shown. Furthermore, it can be shown that with amplitude (10) and 
referring to the expression ( 5 u )  we obtain a Feynman-Green function which is identical 
with the one which can be built up with the particle wavefunctions obtained by 
Audretsch and Schafer (1978) so that our particles are the same as theirs. 

Inserting the expression ( l o a )  into equation (9), we find for the effective Lagrangian 

1 2bms 
1 6 ~  sin(2bms) 

~ ( x )  = 7 Jox ds s-3( ) exp[-m2a2s - bm t a n ( b m ~ ) ( x ~ ) ~ ] ,  

wherein Schwinger's rotation s + -is (Schwinger 1951) has already been performed. 
For the effective action density w ( l )  = W(')/Z (I: = d3x) we find, using equations (11) 
and (8), the result 

112 

exp(-m *a 2s). (12) 
1 "  C X  

wm - - L(x)dxO=- J-, 167r3I2 10 dss-3sin(bms) 

With the help of the relation l /(bms -io) = P ( l / b m s ) + ~ i S ( b m s )  we obtain the 
imaginary part of expression (12). Our final result, the pair creation probability per unit 
coordinate 3-space volume, then reads 

X 

2 Im w("==  (-1)n+in-512 exp[-n.rr(ma2/b)]. 
8 T 3  n = l  

5. Approximation formula 

Starting from the well-known relation 
W"'= i In det(G&,'GZ') = i Tr ln(G,'G, (0) ) 

with G!$ as Feynman-Green operator for flat space-times (b -0  in the expansion laws 
( l a )  and ( lb) )  it can be shown (cf. Brezin and Itzykson 1970) that 2 Im w(*)  is 
approximately (WKB-approximation) given by 

with 

w = ( / cZ+m2~Z)1 ' z  and h = dw/dxO = dw/d7 (14a) 

if the following conditions are satisfied: 

Ihl<< mR2 (14b) 

and, instead of adiabatic switching, the expansion (cf. Schafer 1978) 

$(h/O 2)2 - +;;/U + 0 for 7 + fm. (14c) 

In equation (14) the expression -ji0 w ( v )  d 7  is the time-dependent part of the classical 
action for a relativistic point particle with mass m. Because of condition (14c) our 
quasi-classical particle modes in the time-asymptotic regions (7 + fa) are the same as 
the ones used in the paper by Schafer (1978). They also coincide with the particle 
modes above. For both expansion laws ( l a )  and ( lb )  the condition (14c) is fulfilled. 
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From the relation (14b) it is easily deduced that for our expansion laws ( l a )  and ( lb )  
a 2  = 0 is not allowed now. Without restrictions we therefore set a' = 1. 

At first, we want to apply formula (14) to the expansion law ( la ) .  Then we must, 
according to equation (14), perform the following integration (z = bmv): 

+m 

dz 2(k2 + m2 Z + z 2, exp[" bm Joz(k2+m2+v2)'/2dv]. 

This we will do in the complex z-plane. An examination of the integrals of expression 
(15) shows that we have to cut the complex z-plane between the points z+= 
+i(k2+m2)'l2 and +iw and z -  = -i(k2+m2)'12 and -im, respectively. Furthermore 
the two branch points z* are also poles for the integrand belonging to j:: dz. Referring 
to the steepest-descent method (cf. BrCzin and Itzykson (1970)) we can write for 
expression (15) approximately: 

(15a) 

where r is the contour on the upper sheet with arg(z - z+)  = 5 r / 6  and arg(z - z+) = r / 6  
and avoiding the point z = z +  as z =z+-io.  With the substitution U = 
$ i (2~+) ' /~ (2  - ~ + ) ~ / ' / b m  we find for the integral (15a) 

- 2 f -eu du exp[ 2 Joz+ (k2 + m2+ v 2 ) l I 2  dv] 
3 4U 

- - _  riexp[" /oz' (k2+m2+v2)'12 dv]. 
3 bm 

The u-integration here is taken along a positively oriented path which follows the real 
axis from -00 and returns to -00, enclosing the origin U = 0. If we substitute expression 
(15b) into equation (14), we get 

or, with jt+ (k2+m2 +z2)'I2 dz  = i r (k2+m2) /4  and performing the k-integration, 

2 Im ~ " ' - [ ( r ~ / 9 ( m b ) ~ ' ~ / 8 r ~ ]  exp(-rm/b). (17) 

This result is in nice agreement with the exact expression (13). We do not obtain result 
(13) exactly in the limit b + 0 as our result is based on our approximation formula ( 1 5 4 .  
For the expansion law ( l a )  with a 2  = 1 our condition (14b) implies 2m >> b. 

Now we apply formula (14) to the expansion law (16). Using the same method as 
above, instead of formula (16) we obtain the following expression ( z  = bm'I2q): 

exp (-2 Im A) cos2(Re A) d3k 2 r 

4 1 m  
2 Im w ( ' ) = - .  

9 

with 

2 A = -  bml12 Io ( k 2 + m 2 + z 4 ) 1 ' 2 d ~  
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and zo = [(l +i) /J2](k2+ m2)ll4 or Re A = Im A and 
1 

with y = lo (1 - u4) l l2  du d 0.9. 
(k2+m2)3/4  

bm ’/’ I m A  =h y 

Taking the approximation cos2(Re A )  + k and the abbreviations y = ( x 2  +  CY')^'^ - 
x = 2y2/3k/(b2m)’/3 and CY = 2 ( ~ m / b ) ’ / ~ ,  it follows from equation (18) that 

(18a) 

Because our approximation formda (14) is, according to (14b), valid only if 2m2 >> b2, 
i.e. a’>> 1, the expression (18a), with sufficient precision, becomes 

2 Im w ( l ) =  [ ( . r r2 /9(mb)3/2 /25/4(3 .rry)3 /2]  e ~ p ( - 2 ~ / ~ y ( m / b ) )  (18b) 

in which the definition for CY has been used. 

6 .  Discussion 

Our exact result (13) has been obtained without manifestly covariant working and 
without applying any regularising procedure. It is completely in agreement with the 
result obtained by Audretsch and Schafer (1978): their expression nk = 
exp [ - T .  (k2+m2a2)/mb] for the mean number of pairs created per unit coordinate 
3-space and 3-momentum volume is related to 2 Im w ( l )  of equation (13) as it must be 
on general grounds (Damour 1977) as follows: 

With respect to our approximate results (17) and (18b) it is interesting to note that both 
have the same mass-dependence. Heuristically the exponential factor can be made 
plausible: the probability of finding a virtual particle pair in which both particles are 
separated by a distance Sx is proportional to exp ( -mSx) ;  if, however, Sx approxi- 
mately equals r, where rY2 means a typical curvature value (in our case b2), the particles 
can become real so that a factor exp (-Emr), with E approximately equal to 1, has to be 
expected (cf. for example Woodhouse 1977). The pre-exponential factor (mb)3/2 in the 
expressions (17) and (18b) means that the virtual particle pairs, which are prepared by 
the gravitational field for pair creation per space-dimension, are proportional to 
(mr”)’”. All these things are similar to the constant electric field case in which we have 
instead of r the term m/eE (BrCzin and Itzykson 1970). The relevant difference lies in 
the time-dimension, which in the case of the electric field produces a further factor 
(m(eE/m))’”. This however leads directly to a particle pair creation rate. 

If we take the same value for b in the equations (17) and (186) then we find that 
expansion law (1 b) is more effective in producing particle pairs than expansion law ( l a ) .  

As can be seen from equation (19) in noting nk << 1, which is related to equation 
(14b), in the WKB regime for the total number density of the created particle pairs out 
of the cosmological vacuum it follows that (compare equation (14)) 
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In this connection the papers of Audretsch (1979) and Muller et a1 (1978) have to be 
mentioned as, although different approaches are used, equivalent? WKB approxima- 
tion formulas for the number density (19a) are obtained. 

Finally we are not able to make any statements about local vacuum fluctuation 
effects because our non-manifest covariant calculations do not admit covariant 
regularisation procedures. They appear to be adapted only to the global particle pair 
creation phenomenon. 
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